** 1) Creation of dummy indicators by a priori expectations. * all exact title-by-status / title / major group / submajor group / etc combinations :. compute dibst=(hbst=wbst). compute diocc=(hocc=wocc). compute digp1=(h1gp=w1gp). compute digp2=(h2gp=w2gp). *etc. * all self-employed husbands (empst=1) with wives employee company secretaries (wbst=2225). compute compsec=(wbst=2225 & hempst=1). * all couples where one is self employed (empst=1) and other is family assistant (empst=2). compute fambusi=((hempst=1 & wempst=2) | (hempst=2 & wempst=1)). * all teachers (any occ from 441 to 459) :. compute teach=(hocc ge 441 & hocc le 459 & wocc ge 441 & wocc le 459). * farming : husband farmers occ 110, wife farmer occ 110 or agricultural worker occ 160) :. compute farm=(hocc=110 & (wocc=110 | wocc=160)). * Catering : husband publican occ 550 and wife barmaid occ 930) :. compute pub=(hocc=550 & wocc=930). ** 2) Specific combinations identified through examining models. compute specpsd=0. if (hocc=345 & wocc=456) specpsd=1. if (hocc=123 & wocc=789) specpsd=1. . etc . ** Save out to a data file :. sav out="rev1pseuds1.sav". ** Apply chosen specification to a given model :. compute m1prob=(diocc=1 | farm=1 | pub=1 | fambusi=1 | specpsd=1). temp. select if (m1prob=0). correspondence...
Return to Handling diagonals in SPSS CA
Last modified 14 February
2002
This
document is maintained by
Paul Lambert (paul.lambert@stirling.ac.uk)